МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

МАТЕРИАЛЫ КЕРАМИЧЕСКИЕ ЭЛЕКТРОТЕХНИЧЕСКИЕ КЛАССИФИКАЦИЯ И ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

Ceramic electrotechnical materials. Classification and technical requirements

МКС 29.035.30 ОКП 34 9300

Дата введения 01.01.85

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. РАЗРАБОТАН И ВНЕСЕН Министерством электротехнической промышленности СССР
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 27.01.83 № 429
- 3. Стандарт полностью соответствует СТ СЭВ 3567—82, стандартам МЭК 672-1—80, МЭК 672-3—84
 - 4. ВЗАМЕН ГОСТ 20419—75 в части технических требований
- 5. Ограничение срока действия снято по протоколу № 5—94 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 11-12—94)
- 6. ИЗДАНИЕ (декабрь 2002 г.) с Изменениями № 1, 2, 3, утвержденными в августе 1985 г., сентябре 1987 г., декабре 1988 г. (ИУС 11-85, 12-87, 3-89)

Настоящий стандарт распространяется на керамические электротехнические материалы, предназначенные для изготовления электротехнических изделий, работающих при постоянном и переменном напряжении частотой до 100 Гц, и устанавливает классификацию и технические требования к этим материалам.

1. КЛАССИФИКАЦИЯ

- 1.1. В зависимости от основной кристаллической фазы, содержания оксида алюминия и свойств материалов устанавливают следующие группы и подгруппы керамических электротехнических материалов:
 - группа 100 материалы на основе щелочных алюмосиликатов (фарфоры);
 - подгруппа 110 силикатный фарфор (массовая доля A1₂O₃ до 30%);
 - подгруппа 110.1 тонкодисперсный силикатный фарфор;
 - подгруппа 111 прессованный силикатный фарфор;
 - подгруппа 112 силикатный фарфор высокой прочности;
 - подгруппа 120 глиноземистый фарфор (массовая доля A1₂O₃ от 30 до 50%);
- подгруппа 130 глиноземистый фарфор высокой прочности (массовая доля $A1_2O_3$ свыше 50%):
- подгруппа 130.1 глиноземистый фарфор высокой прочности, изготовленный методом пластичного формирования (массовая доля $A1_2O_3$ свыше 50%);
 - группа 200 материалы на основе силикатов магния (стеатиты) ;
 - подгруппа 210 прессованный стеатит;

```
подгруппа 220 — пластичный стеатит;
   подгруппа 220.1 — литейный стеатит;

    группа 300 — материалы на основе оксида титана, титанатов, станнатов и ниобатов;

   подгруппа 310 — материалы на основе оксида титана;
   подгруппа 340 — материалы на основе титанатов стронция, висмута, кальция;
   подгруппа 340.1 — материалы на основе титаната кальция;
   подгруппа 340.2 — материалы на основе стронций-висмутового титаната;
   подгруппа 350 — материалы на основе титаната бария со значением относительной
диэлектрической проницаемости (\varepsilon_r) до 3000;
   подгруппа 350.1 — материалы на основе титаната бария, стронция, висмута;
   подгруппа 351 — материалы на основе титаната бария со значением относительной
диэлектрической проницаемости (\varepsilon_r) свыше 3000;
   подгруппа 351.1 — материалы на основе титаната бария, станната и цирконата кальция;
   - подгруппа 400 — материалы на основе алюмосиликатов магния (кордиерит) или бария
(цельзиан), или кальция (анортит) плотные;
   подгруппа 410 — кордиерит;
   подгруппа 420 — цельзиан;
   подгруппа 420 — анортит;
   - группа 500 — пористые материалы на основе алюмосиликатов магния;
   подгруппа 510 — 512 — материалы на основе алюмосиликатов магния пористые
термостойкие;
   подгруппа 520 — высококордиеритовый материал пористый;
   подгруппа 530 — высокоглиноземистый материал пористый термостойкий;
   - группа 600 — глиноземистые материалы (муллито-корундовые);
   подгруппа 610 — глиноземистый материал (массовая доля A1_2O_3 от 50 до 65\%);
   подгруппа 620 — глиноземистый материал (массовая доля A1<sub>2</sub>O<sub>3</sub> от 65 до 80%);
   подгруппа 620.1 — глиноземистый материал (массовая доля A1_2O_3 от 72 до 77%);
   - группа 700 — высокоглиноземистые материалы (корундовые);
   подгруппа 780 — высокоглиноземистый материал (массовая доля A1<sub>2</sub>O<sub>3</sub> от 80 до 86%);
   подгруппа 786 — высокоглиноземистый материал (массовая доля A1<sub>2</sub>O<sub>3</sub> от 86 до 95%);
   подгруппа 786.1 — высокоглиноземистый материал (массовая доля A1_2O_3 от 86 до 95\%) и
оксиды переменной валентности;
   подгруппа 795 — высокоглиноземистый материал (массовая доля A1<sub>2</sub>O<sub>3</sub> от 95 до 99%);
   подгруппа 799 — высокоглиноземистый материал (массовая доля A1_2O_3 свыше 99%).
```

2. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

- 2.1. Материалы керамические должны изготовляться в соответствии с требованиями настоящего стандарта по технологической документации, рецептуре, утвержденным в установленном порядке.
- 2.2. Нормы и требования керамических материалов должны соответствовать указанным в табл. 1—3 и отмеченным знаком*.

Основной показатель	Группа 100							I	руппа 20	00		Группа 400)														
	110	110,1	111	112	120	130	130,1	210	220	220,1	410	420	430														
1. Плотность γ, г·см ⁻³ , не менее		2,45		_	2,7	_	2,85	2,8	_	2,8		_															
 Кажущаяся плотность ρ_κ, г·см⁻³, не менее 	, 2,3* 2,2*			2,3* 2,4* 2,5* 2,7		2,7*	2,5*	2,6*		2,1*	2,7*	1,8															
3. Кажущаяся пористость П _к , %, не более	0,0 1,5*),0		0,7*),0	0	1,5															
4. Открытая пористость (прокраска в фуксине) П		тствие раски*	— Отсутствие прокраски*			и*	_		тствие раски*																		
5. Прочность на изгиб σ_u , МПа, не менее: - неглазурованного образца	60*	80*	40*	80*	110*	140*	180*	90*	120*		120*		120*		120*		120*		120*		120*		120*		60*	80*	40*
- глазурованного образца	70	100	_	100	140	160	200			_	_	•	•														
6. Прочность на растяжение σ_p , МПа, не менее: - неглазурованного образца	30	45	_	45	55	60	70	_	45	_		25															
- глазурованного образца	35	55	_	55	65	70	90		60																		
7. Прочность на сжатие σ_c , МПа, не менее				<u> </u>				500	600	_	300	_	_														
8. Ударная прочность σ_{ν} , кДж/м ² , не менее		1,8	1,3		2,2	2,5	2,7	2,2		2,5	1,8	2,0	1,3														
9. Модуль упругости <i>E</i> , МПа·10 ³ , не менее	60	70	_	70	80	100	110	60		80	90	_	_														
10. Средний коэффициент термического линейного расширения α , $K^{-1} \cdot 10^{-6}$, при температуре: - от 20 до 100 °C	C	Эт 3,0 до 6,	0*	От 3,0 до 8,0	о От 3,0 до 6,0*	От 5,0 до 7,0*	От 3 до 5*	От 5,0 до 6,0	От 5,0 до 9,0	От 5,0 до 6,0	От 0,5 до 2,0	От 3,0 до 5,0	3,0-6,0														
- от 20 до 600 °C	(Эт 4,0 до 7	,0	От 3,0 до	От 5,0 до	От 5,0 до	От 3 до 6	От 5,0 до	От 5,0) до 9,0	От 1,0 до	От 3,0 до	4,0-7,0														
11. Средняя удельная теплоемкость c_p , Дж·кг ⁻¹ ·К ⁻¹ , при температуре от 20 до 100 °C			От 800	8,0 Эдо 900	7,5	8,0	800-900	8,0 O	т 800 до 9	900	3,0 От 800 до 1200	6,0 От 800 до 1000	800-900														
12. Теплопроводность λ,	(Эт 1,0 до 2	,5	От 1,4 до	От 1,2 до	От 1,5 до	От 1,5 до	От 1,0 до	От 2,	0 до 3,0	От 1,	5 до 2,5	1,0-2,5														

Вт·м ⁻¹ ·К ⁻¹ , при температуре от 20 до 100 °C				2,5	2,6	3,0	3,0	2,5				
13 . Средняя температуропроводность a , $M^2 \cdot c^{-1} \cdot 10^{-6}$, при температуре от 20 до 100 °C	1,1	От 0,6 до 1,4	От 0,6	5 до 1,1	От 0,8 до 1,4	От 0,1	до 1,7	(Ут 1,0 до 1,1	От 0,4 до 0,6	_	0,5-1,7
14. Стойкость к термоударам Δt , К, не менее	160	150	_	150	160	150	170	8	100	250*	200*	_
15. Электрическая прочность E_{np} , кВ·мм ⁻¹ , при частоте 50 Γ ц, не менее	25*	30*	_	20*	30*	20*	30*		20*	10*	20*	_
16. Относительная диэлектрическая проницаемость ε_r при частоте 50 Γ ц	От 6,0 до 7,0	От 5,0 до 7,0		От 5,0 до 7,0	От 6,0 до 7,0	От 6,0 до 7,5	От 7до 8,5	_	От 5,0 до 7,0	От 4,0 до 6,0	-	-
17. Тангенс угла диэлектрических потерь tg $\delta \cdot 10^3$ при частоте 50 Γ ц, не более	2	5		2	5	30	20	25	5	25	10	
18. Удельное объемное сопротивление при постоянном токе р _v , Ом·см, не менее, при температуре: 20 °C 200 °C) ¹³	10 ¹¹ 10 ⁷ *) ¹³			10 ¹³		$\frac{10^{14}*}{10^{13}*}$	$\frac{10^{11}}{10^{7*}}$
600 °C	1,	0	10	1	0^4	-			$\frac{10^5}{10^5}$ 10^5	10 ⁴ *	109*	10 ⁴
19. Удельное поверхностное сопротивление ρ_s , Ом, не менее						10 ¹⁰					10 ¹²	10 ¹⁰

^{*}Основные показатели свойств материалов, остальные показатели являются справочными.

Примечания 1. Для материалов подгрупп 110, 110,1, 120, изготовленных методами непластичной технологии, электрическая прочность должна быть не менее 20 кВ·мм⁻¹. 2. При применении материала подгруппы 210 для изготовления электроустановочных изоляторов (или изделий) показатель прочности на сжатие не устанавливают. 3. Для материалов подгруппы 110, используемых для изготовления изоляторов на напряжение до 1000 В, показатель тангенса угла диэлектрических потерь не

нормируют.

Основной показатель	Группа 300											
	310	340	340,1	340,2	350	350,1	351	351,1				
1. Кажущаяся плотность ρ_{κ} , г·см ⁻³ , не менее	3,5*	3,	0*	5,0*	4,0*	5,0*	4,0*	5,0*				
2. Кажущаяся пористость Π_{κ} , %, не более	0,0*											
3. Открытая пористость (прокраска в фуксине) Π	Отсутствие прокраски											
4. Прочность на изгиб σ_u , МПа, не менее,		7	0			50						
неглазурованного образца												
5. Средний коэффициент термического линейного	От 6,0 до	_	_	От 6,0 до				От 6,0				
расширения α , $K^{-1} \cdot 10^{-6}$, при температуре от 20 до 100 °C	8,0			8,0				до 8,0				
6. Средняя удельная теплоемкость c_p , Дж·кг ⁻¹ ·К ⁻¹ , при	От 700 до											
температуре от 20 до 100 °C	800											
7. Теплопроводность λ ., $B_{T} \cdot M^{-1} \cdot K^{-1}$, при температуре от	От 3,0 до —											
20 до 100 °C	4,0	4,0										
8. Электрическая прочность E_{np} , кВ·мм ⁻¹ , при частоте 50	8*		6*		2*	2,5*	2*	2,5*				
Гц, не менее												
9. Относительная диэлектрическая проницаемость ε_r												
при частоте:			i	i								
50 Гц	От 40 до	От 100 до	От 130 до	От 800 до	От 350 до	От 1800 до	Свыше	8500*				
	100*	1000*	150*	1000*	3000*	2500*	3000*					
1 кГц	_	_	От 130 до	От 800 до		От 1800 до		8500				
2		 	150	1000		2500						
10. Тангенс угла диэлектрических потерь $tg \delta \cdot 10^3$ при	6,5		1,0	3,0	_	5,0		30				
частоте 1 кГц, не более	12		11			10		<u> </u>				
11. Удельное объемное сопротивление при постоянном	10 ¹² *		1011*			10 ¹⁰ *	•					
токе ρ_{ν} , Ом·см, не менее, при температуре 20 °C			10	1								
12. Удельное поверхностное сопротивление ρ_s , Ом, не	_	_	10^{10}									
менее												

^{*}Основные показатели свойств материалов, остальные показатели являются справочными.

Таблица 3

Основной показатель	Группа 500				I	руппа 60	0	Группа 700						
	510	511	512	520	530	610	620	620,1	780	786	786,1	795	799	
1. Плотность γ, ГСМ ⁻³ , не менее	2,2			2,1	_			3,4	_	_	3,5	3,8	3,9	
2. Кажущаяся плотность ρ_{κ} , г·см	1,9* 1,8*		1,9*	2,1*	2,6*	2,8*	2,9*	3,2*	3,4*	3,5*	3,7*	3,8*		
³ , не менее		-												
3. Кажущаяся пористость Π_{κ} , %,	30* 20* 40*			20*	30*	30* 0,0*			0,0* 0,0*					

не более													
4. Открытая пористость		I	Отсутствие прокраски*										
(прокраска в фуксине) Π									,				
5. Прочность на изгиб σ_u , МПа,	35*	25*	15*	40*	30*	120*	150*	240*	200* 250* 280*		300*		
не менее, неглазурованного													
образца													
6. Прочность на растяжение σ_p ,													
МПа, не менее													
7. Прочность на сжатие σ_c , МПа,													
не менее													
8. Ударная прочность σ_{ν} , кДж·м ⁻² ,	1,4	1,0	0,8	1,4	1,0	3,0	3	,5	3,8		4	1,0	
не менее													
9. Модуль упругости E , МПа· 10^3 ,				40		100	1:	50	200	2	20	280	300
не менее													
10. Средний коэффициент													
термического линейного													
расширения α, К ⁻¹ ·10 ⁻⁶ , при													
температуре:													
- от 20 до 100 °C	От 3,0до		От 3,0	От 1,5	От 3,5	От 3,0	до 6,0	От 4,0	2				до 6,5
	5,0	до 6,0	до 5,0	до 3,5	до 5,0			до 6,0					1
- от 20 до 600 °C	От 3,0	От 4,0	От 3,0	От 2,0	От 4,0	От 4,0	до 7,0*	От 5,0		От 5,5	5 до 8,0		От 6,5
	до 6,0	до 6,0	до 6,0	до 4,0	до 6,0			до 8,0					до 8,0
11. Средняя удельная	От 750	до 850	От 750	до 900	От 800				От 850	до 1050			
теплоемкость c_p , Дж·кг ⁻¹ ·К ⁻¹ , при					до 900								
температуре от 20 до 100 °C	0.40	0.10	0.10		0.4.4	0.00	0 (0	1	0.40	1			0.10
12. Теплопроводность λ, Вт·м ⁻¹ ·К	От 1,0	От 1,3	От 1,0	От 1,0	От 1,4	От 2,0	От 6,0		От 10 до	От 14	4 до 24		От 19 до
1, при температуре от 20 до 100	до 1,7	до 1,8	до 1,5	до 1,8	до 2,0	до 6,0	до 15,0		16			28	30
°C				0 0 -	0 00	0.11	0.00					0.00	0.0.5
13. Средняя	O	т 0,7 до 1	,0	От 0,7	От 0,8	От 1,1	От 2,0		0	т 2,5 до 4	1,0	От 3,0до	
температуропроводность a , $M^2 \cdot C$				до 1,1	до 1,2	до 1,6	до 3,5					4,5	до 5,0
¹ ·10 ⁻⁶ , при температуре от 20 до 100 °C													
	150*	200*	250*	300*	350*	1.5	0*	170*		140		150	180
14. Стойкость к термоударам Δt ,	150*	200*	250*	300*	350*	15	0*	1/0*		140		150	180
K, не менее				l		1.7	1.7	20*	10*		1.74		174
15. Электрическая прочность E_{np} ,						17	15	20*	10*		15*		17*
$\kappa \text{В·мм}^{-1}$, при частоте 50 Γ ц, не													
менее							0-65	0-70	0-70	0 O	0-00	0-00	От 9,5
16. Относительная			_	_			От 6,5	От 7,0 до 8,5	От 7,0	до 9,0	От 8,0 до 10,0	От 9,0	От 9,5 до 10,0
диэлектрическая проницаемость							до 8,5	до 8,3			до 10,0	до 10,0	до 10,0
ε_r при частоте 50 Γ ц]					<u> </u>

17. Тангенс угла					1,0	0,9*		0,5*	0,2*
	_				1,0	0,9		0,5	0,2
диэлектрических потерь tg 8.10^3									
при частоте 50 Гц, не более									
18. Удельное объемное									
сопротивление при постоянном									
токе ρ_{ν} , Ом·см, не менее, при									
температуре:									
20 °C	_		10^{13}				10^{14}		
200 °C	10^{9*}	10 ¹⁰ *	10 ¹¹ *		10	$)^{12}$	10^{10}	10)12
600 °C	10^{5}	10^{6}	$10^{6}*$	10 ⁷ *	10^{7}	10 ⁸	10^{6}	10	0_8
19. Удельное поверхностное	<u> </u>		10^{10}				_		
сопротивление ρ_s , Ом, не менее									

 $[\]overline{\ ^* \text{Основные показа}}$ тели свойств материалов, остальные показатели являются справочными.

(Измененная редакция, Изм. № 1, 2, 3).